Реле

Основные производители

Перед выбором производителя реле, необходимо ознакомится с его рейтингом и каталогом продукции:

Производитель Описание
АО «НПП Старт» Основной акцент компании – разработка и  производство релейных соединений
ОАО «МиассЭлектроАппарат» Деятельность направлена на производство продукции для автомобилей
ОАО «Иркутский релейный завод» Основное производство –коммутационная техника
Фирма «Crydom» США Ведущая торговая марка твердотельных изделий
«Finder» С 1954 года производит исключительно релейными соединениями. Занимает 3 место в линейке производителей

Изделие производителя «Finder»

Что такое реле: краткий экскурс в историю

Термин пришел из английского языка, от слова «reley», обозначавшим в старину смену почтовых лошадей, а позднее передачу эстафеты в спортивных состязаниях. Существует две версии создания такого устройства. Согласно первой реле изобрел русский ученый П.Л. Шиллинг в начале 30-х годов прошлого столетия. Это была основная составляющая часть в разработанном им телеграфе. Однако большая часть историков склоняется к тому, что прародителем реле стал американец Джорж Генри. Некоммутационное устройство, основывавшееся на электромагнитном принципе действия, получило распространение в 1937 году. Именно тогда поступил в производство первый телеграф.

Какая из этих версий правильная, сейчас уже сказать нельзя. Возможно, как часто это бывает, ученые разрабатывали устройство параллельно, не зная об изобретениях друг друга. Об этом говорит и то, что историками называется один и тот же промежуток времени появления реле – 1931-1935 годы.

Это устройство отключает напряжение при перегрузке сети по мощности, сберегая электропроводку

Критерии для классификации

Классификация реле или «электрических выключателей» связана с типом сигнала и конструктивными особенностями, подключением к однофазным или трёхфазным сетям. Ниже будут рассмотрены основные виды этого устройства.

Твердотельное реле является прибором электронного типа, в котором отсутствуют какие-либо движущиеся (механические) части. Область применения связана с включением и отключением цепей высокой мощности за счёт низкого напряжения. Прибор контроля максимального напряжения сконструирован на противоположном принципе. В связи с его принципом работы оно подключается исключительно к сети с постоянным током.

Под реле задержки времени понимают такие электротехнические устройства, которые используются для замыкания или размыкания цепи не в зависимости от значения поступающего сигнала, а строго спустя установленный промежуток времени. В устройствах присутствует микроконтроллер, регулирующий его работу по времени и управляющий задержкой отключения и включения.

Программируемое реле времени – это и есть прибор с микроконтроллерами, позволяющий пользователю более детально программировать желаемые временные параметры.

Электронное реле времени для создания задержки выключения подразумевает использование разнообразных решений – от цифровых до аналоговых, включая интегральные цепи и таймеры.

Цифровое реле времени делится на несколько типов. Одной из его разновидностей является беспроводное устройство. Блок управления передаёт на него кодированный сигнал. В основном используется в автомобилестроении.

Наиболее ярким примером использования реле времени с задержкой выключения 220 В можно назвать принцип работы старых стиральных машин. Потребителю приходилось поворачивать ручку, после чего внутри были слышны звуки обратного отсчёта.

Электромеханическое реле времени можно эксплуатировать только при подключении к трёхфазной сети постоянного тока. В его состав входит как основная, так и дополнительная обмотка короткозамкнутого типа из медной гильзы.

Достаточно вспомнить, как работают старые стиральные машинки. Для пуска аппарата необходимо было лишь повернуть ручку на несколько делений. При этом машинка начинала работать, а внутри корпуса около ручки что-то начинало тикать. Как только ручка доходила до нулевой отметки, стиральная машина переставала работать. Вот так работало реле времени с задержкой выключения 220 В.

Когда требуется обеспечить защиту электрического двигателя или установки, работающей от трёхфазной сети, используют реле контроля фаз. Значения управляемого сигнала могут контролироваться в зависимости от наличия всех или отсутствия хотя бы одной фазы, перенапряжения, изменения последовательности фаз и т. д.

Во многих бытовых приборах, включая холодильники, телевизоры, стиральные машины и даже котлы, применяются реле контроля напряжения или РКН. Связано это с тем, что такие устройства уязвимы к перепадам напряжения. Они могут выходить из строя как из-за повышения, так и ввиду уменьшения напряжения.

Назначение реле напряжения РН – разъединение и замыкание электрических цепей в случае повышения заданного значение давления. Принцип действия можно сравнить с предохранителями, только с одной разницей – вместо срабатывания от высокого тока оно активируется из-за повышения напряжения.

Для осуществления контроля над станками и целыми комплексами используется промежуточное реле. Один контакт отвечает за активацию станка, в то время как при помощи другого отключается иное устройство.

Импульсное реле характеризуется важным преимуществом над обычным. Речь идёт об отсутствии необходимости в постоянной подаче электроэнергии. Использовать бистальное реле (как ещё его называют) приходится только тогда, когда с заданной мощностью обычное уже не справляется.

Устройство с экзотическим названием герконовое реле размыкает или замыкает управляющую и управляемую сеть за счёт магнитного поля, создаваемого постоянным или внешним магнитом. К примеру, им может быть соленоид.

Контакты реле.

В зависимости от конструктивных особенностей контакты промежуточных реле бывают нормально разомкнутые (замыкающие), нормально замкнутые (размыкающие) или перекидные.

3.1. Нормально разомкнутые контакты.

Пока напряжение питания не подано на катушку реле, его нормально разомкнутые контакты всегда разомкнуты. При подаче напряжения реле срабатывает и его контакты замыкаются, замыкая электрическую цепь. На рисунках ниже показана работа нормально разомкнутого контакта.

3.2. Нормально замкнутые контакты.

Нормально замкнутые контакты работают наоборот: пока реле обесточено, они всегда замкнуты. При подаче напряжения реле срабатывает и его контакты размыкаются, размыкая электрическую цепь. На рисунках показана работа нормально разомкнутого контакта.

3.3. Перекидные контакты.

У перекидных контактов при обесточенной катушке средний контакт, закрепленный на якоре, является общим и замкнут с одним из неподвижных контактами. При срабатывании реле средний контакт вместе с якорем перемещается в сторону другого неподвижного контакта и замыкается с ним, одновременно разрывая связь с первым неподвижным контактом. На рисунках ниже показана работа перекидного контакта.

Многие реле имеют не одну, а несколько контактных групп, что позволяет осуществлять управление несколькими электрическими цепями одновременно.

К контактам промежуточных реле предъявляются особые требования. Они должны иметь малое переходное сопротивление, большую износоустойчивость, малую склонность к привариванию, высокую электропроводность и большой срок службы.

В процессе работы контакты своими токоведущими поверхностями прижимаются друг к другу с определенным усилием, создаваемым возвратной пружиной. Токоведущая поверхность контакта, соприкасающаяся с токоведущей поверхностью другого контакта называется контактной поверхностью, а место перехода тока из одной контактной поверхности в другую называется электрическим контактом.

Соприкосновение двух поверхностей происходит не по всей кажущейся площади, а лишь отдельными площадками, так как даже при самой тщательной обработке контактной поверхности на ней все равно будут оставаться микроскопические бугорки и шероховатости. Поэтому общая площадь соприкосновения будет зависеть от материала, качества обработки контактных поверхностей и усилия сжатия. На рисунке показаны контактные поверхности верхнего и нижнего контактов в сильно увеличенном виде.

В месте перехода тока с одного контакта в другой возникает электрическое сопротивление, которое называется переходным сопротивлением контакта. На величину переходного сопротивления существенное влияние оказывает величина контактного нажатия, а также сопротивление окисных и сульфидных пленок, покрывающих контакты, так как они являются плохими проводниками.

В процессе длительной работы поверхности контактов изнашиваются и могут покрываться налетами копоти, окисными пленками, пылью, непроводящими частицами. Также износ контактов может быть вызван механическими, химическими и электрическими факторами.

Механический износ происходит при скольжении и ударах контактных поверхностей. Однако главной причиной разрушения контактов являются электрические разряды, возникающие при размыкании и замыкании цепей в особенности цепей постоянного тока с индуктивной нагрузкой. В момент размыкания и замыкания на контактных поверхностях происходят явления плавления, испарения и размягчения контактного материала, а также перенос металла с одного контакта на другой.

В качестве материалов для контактов реле применяют серебро, сплавы твердых и тугоплавких металлов (вольфрам, рений, молибден) и металлокерамические композиции. Наибольшее применение получило серебро, обладающее малым контактным сопротивлением, высокой электропроводностью, хорошими технологическими свойствами и относительно невысокой стоимостью.

Следует помнить, что абсолютно надежных контактов нет, поэтому для повышения их надежности применяют параллельное и последовательное включение контактов: при последовательном включении контакты могут разорвать большой ток, а параллельное включение повышает надежность замыкания электрической цепи.

Зачем нужен ограничитель переходных процессов и как работают реле?

Реле нуждаются в ограничителе переходных процессов, чтобы предотвратить возможность выхода из строя коммутационного устройства в цепи из-за индуктивного обратного хода. Он обеспечивает пропускание тока после отключения индуктора.

Замкнутый контур с обратным диодом

На рисунке выше показано, что полярность блока питания и диода противоположны друг другу. Таким образом, диод находится в обратном смещении, когда переключатель замкнут. Поскольку это обратное смещение, это не повлияет на схему, потому что диод не пропускает ток.

Обрыв цепи с обратным диодом

На рисунке выше показана разомкнутая цепь, в которой индуктивность поменяла полярность, а диод находится в прямом смещении. В этом варианте диод позволяет пропускать и рассеивать ток с той скоростью, которая необходима индуктивности. Добавление диода дает возможность прохождению тока.

Таким образом, катушка индуктивности должна создавать лишь небольшое падение напряжения для развития идеального протекания тока, поскольку диоды имеют почти нулевое сопротивление при прямом смещении. При таком построение схемы, коммутационное устройство не будет повреждено. Следовательно, когда переключатель разомкнут, обратная полярность катушки индуктивности будет соответствовать полярности диода и предотвратит скачок напряжения обратного хода.

Нормально открытая, нормально закрытая и общая клемма

  • Нормально открытая (NO) клемма — подключите ваше устройство (например, светодиод или любую нагрузку) к этой клемме, если вы хотите, чтобы устройство было выключено, когда реле не запитано, и включено, когда реле запитано.
  • Нормально замкнутая (NC) клемма — подключите к этой клемме, если вы хотите, чтобы ваше устройство было выключено, когда реле включено, и нормально включено, когда реле не запитано.
  • Общая клемма — это терминал реле, к которому вы подключаете первую часть вашей цепи. Когда реле находится под напряжением, а переключатель замкнут, общая клемма и нормально разомкнутый контакт имеют непрерывность цепи. В другом случае, когда реле не запитано, а переключатель разомкнут, общая клемма и нормально замкнутый контакт имеют так же непрерывность цепи.
  • COIL — клеммы, на которые вы подаете напряжение для последующего прохождения питания на катушки, которые в конечном итоге замыкают переключатель. Здесь полярность не важна. Любая из сторон может быть отрицательной или положительной. Однако при использовании диода полярность имеет значение.

Пример схемы с использованием реле SRD-05VDC-SL-C 5V

Контактный разъем (S) — является входом. Контакт (+) подключается к источнику питания +5V постоянного тока, а контакт (-) подключается к заземлению источника питания. Реле и светодиод будут работать при наличии высокого сигнала на входе (S). Диод на катушке реле предназначен для предотвращения ЭДС. Транзистор обеспечивает усиление по току, а небольшой входной ток может переключать относительно большой ток, необходимый для работы катушки реле.

Вы можете подключить вход S платы реле к любому из цифровых выходов Arduino Uno. В данном случае он подключен к выводу 13, который можно включать и выключать. Лампочка и аккумулятор на 12V подключены последовательно к общей клемме и нормально разомкнутым штыревым контактам на модуле реле. Реле сработает и включит лампочку, когда на выходе Arduino высокий уровень. Добавление другой лампочки к нормально замкнутому штыревому контакту реле приведет к попеременному миганию лампочек.

УСТРОЙСТВО И ПРИНЦИП ДЕЙСТВИЯ ЭЛЕКТРОМАГНИТНОГО РЕЛЕ

Конструктивно электромагнитное реле представляет собой катушку выполняющую роль втягивающего устройства.

Она состоит из основания из немагнитного материала, на которое намотан медный провод, который, в зависимости от исполнения, может быть в изоляции из тканевых, синтетических материалов, но в большинстве случаев проводник покрывается диэлектрическим лаком.

При подаче напряжения на катушку происходит втягивание металлического сердечника, связанного с толкателем, который приводит в движение контакты.

В зависимости от назначения контактный блок реле может состоять из нормально открытых (разомкнутых) или нормально закрытых (замкнутых) контактов, в некоторых случаях блок контактов может совмещать в себе оба типа контактов.

Более подробно устройство реле можно понять если разбить его составляющие на блоки:

  • управляющий — служит для преобразования управляющего сигнала (в нашем случае из электрического — в магнитное поле);
  • блок промежуточных элементов — приводит в действие исполнительный механизм;
  • исполнительный блок — воздействует непосредственно на управляемую цепь. В качестве исполнительного блока можно рассматривать контактную группу устройства.

Также, при проектировании управляющих цепей с использованием электромагнитных реле необходимо учитывать, что ввиду того что чувствительным элементом является электромагнитная катушка, то ток в обмотке увеличивается или уменьшается не мгновенно, а в течении некоторого времени.

В связи с этим следует учитывать возможное время задержки срабатывания. Оно достаточно мало, но в некоторых ситуациях может оказывать влияние на работу других элементов схемы.

Электромагнитные реле можно классифицировать по следующим признакам:

области применения:

для цепей управления, защиты или сигнализации;

мощности управления:

малой мощности, управляющий сигнал ≤1 Вт, средней мощности, сигнал управления находится в пределах от 1 до 9 Вт, высокой мощности — мощность сигнала ≥10 Вт;

времени реакции на сигнал управления:

безынерционные время реакции ≤ 0,001 сек., быстродействующие — время реакции от 0,001 до 0,05 сек., замедленные время реакции от 0,05 до 1 сек., а также реле времени с регулируемой задержкой срабатывания.

характеру управляющего напряжения:

постоянного тока —нейтральные, поляризованные и переменного тока.

Отдельно стоит остановиться на особенностях реле постоянного тока. Как было выше сказано они подразделяются на нейтральные и поляризационные. Главное отличие этих двух групп заключается в том, что поляризационные устройства чувствительны к полярности приложенного напряжения, то есть подвижный сердечник меняет свое направление с правого на левое или наоборот в зависимости от полярности напряжения.

Электромагнитные реле постоянного тока делятся на:

  • двухпозиционные;
  • двухпозиционные с преобладанием;
  • трехпозиционные или реле с нечувствительной зоной.

Срабатывание же устройств нейтрального типа не зависит от полярности подаваемого напряжения. К недостаткам реле использующих, в качестве управляющего сигнала, постоянный ток можно отнести необходимость установки блоков питания, для подачи постоянного тока и высокая стоимость самого устройства.

Реле переменного тока этого лишены, но и у них есть свои недостатки такие как — необходимость доработки конструкции для устранения вибрации сердечника.

Рабочие параметры хуже, чем у устройств использующих линейную форму управляющего сигнала, а именно — хуже чувствительность, гораздо меньшее электрическое усилие. Но в тоже время они могут напрямую подключаться к электрической сети переменного тока.

Варианты управления мощностью в нагрузке

Сегодня выделяется два основных варианта управления мощностью. Рассмотрим каждый и них подробнее:

  1. ФАЗОВОЕ УПРАВЛЕНИЕ. Здесь выходной сигнал по I в нагрузке имеет вид синусоиды. Выходное напряжение устанавливается на уровне 10, 50 и 90 процентов. Преимущества такой схемы очевидны — плавность сигнала на выходе, возможность подключения разных типов нагрузки. Минус — наличие помех в процессе переключения.
  2. УПРАВЛЕНИЕ С КОММУТАЦИЕЙ (В ПРОЦЕССЕ ПЕРЕХОДА ЧЕРЕЗ НОЛЬ). Плюс метода управления в том, что в процессе работы твердотельного реле не создаются помехи, мешающие третьей гармонике в процессе включения. Из недостатков — ограниченность применения. Такая схема управления подходит для емкостной и резистивной нагрузки. Использование ее с высокоиндуктивной нагрузкой не рекомендуется.

Несмотря на более высокую цену, твердотельные реле постепенно вытеснят стандартные устройства с контактами. Это объясняется их надежностью, отсутствием шума, легкостью обслуживания и продолжительным сроком службы.

Имеющие недостатки не оказывают негативного влияния, если правильно подойти к выбору и установке прибора.

Виды теплового реле

Существует несколько видов реле, которые отличаются своими техническими показателями, а также областью применения.

Современное тепловое реле

  1. РТЛ – имеет конструкцию трехфазного механизма. Ее используют для защиты электрических моторов при высоких нагрузках, фазных перекосов, затяжном запуске. Устройство этого вида подключается через клеммы электромагнитных пускателей, или как отдельный механизм.
  2. РТТ – приспособление, которое содержит три фазных провода. Применяется для производства механизмов безопасности. Тепловое реле ограждает моторы от затяжных запусков, а также их заклинивания. Устанавливается посредством пускателей или как самостоятельное оборудование.
  3. РТИ – источником питания для таких реле является электролиния, имеющая три фазы. Применяется в качестве защиты электрических моторов от интенсивного режима. Располагается в корпусе электромагнитных пускателей типа КМТ или КМИ.
  4. ТРП – имеет однополюсную конструкцию и номинальный ток от 1-600А. Прибор защищает трехфазные асинхронные электродвигатели от высоких нагрузок. При этом тепловое реле, которое имеет величину тока 150А, используются в электрических сетях, обладающих постоянным током и напряжением до 440 вольт.

Реле оснащено регулировкой изгиба пластины. Благодаря этому возможно изменять предельные границы срабатывания до 5%. Помимо этого устройство срабатывает при превышении тепловой характеристики 200 градусов, что позволяет его установку в районах с различным температурным режимом.

Основные виды реле и их назначение

Производители настраивают современные коммутационные устройства таким образом, чтобы срабатывание происходило только при определенных условиях, например, при увеличении силы тока, поступающего на входные клеммы КУ. Ниже мы вкратце рассмотрим основные виды соленоидов и их назначение.

Электромагнитные реле

Электромагнитное реле – это электромеханическое коммутационное устройство, принцип действия которого основан на воздействии магнитного поля, созданного током в статичной обмотке, на якорь. Этот вид КУ разделяется собственно на электромагнитные (нейтральные) устройства, которые реагируют лишь на значение тока, подаваемого на обмотку, и поляризованные, работа которых зависит как от токовой величины, так и от полярности.

Принцип работы электромагнитного соленоида

Используемые в промышленном оборудовании электромагнитные реле находятся на промежуточной позиции между сильноточными устройствами (магнитными пускателями, контакторами и т.д.) и слаботочным оборудованием. Наиболее часто данный вид реле применяется в цепях управления.

Реле переменного тока

Срабатывание этого вида реле, как видно из названия, происходит при подаче на обмотку переменного тока определенной частоты. Данное коммутирующее устройство для переменного тока с контролем перехода фазы через ноль или без такового, представляет собой блок из тиристоров, выпрямительных диодов и управляющих схем. Реле переменного тока могут быть выполнены в виде модулей на основе трансформаторной или оптической развязки. Данные КУ применяются в сетях переменного тока с максимальным напряжением 1,6 кВ и средним током нагрузки до 320 A.

Промежуточное реле 220 В

Иногда работа электросети и приборов не возможна без использования промежуточного реле на 220 В. Обычно КУ данного типа применяется, если необходимо разомкнуть или разомкнуть разнонаправленные контакты цепи. К примеру, если используется осветительный прибор с датчиком движения, то один проводник присоединяется к сенсору, а другой подводит электроэнергию к светильнику.

Реле переменного тока широко применяются в промышленном оборудовании и бытовой технике

Работает это таким образом:

  1. подача тока на первое коммутационное устройство;
  2. от контактов первого КУ ток поступает на следующее реле, которое имеет более высокие характеристики, чем у предыдущего и способно выдерживать токи с высокими значениями.

С каждым годом реле становятся эффективней и компактней

Функции малогабаритного реле переменного тока с напряжением 220 В весьма разнообразны и широко используются в качестве вспомогательного устройства в самых различных областях. Данный вид КУ применяется в тех случаях, когда основное реле не справляется со своей задачей или же при большом количестве управляемых сетей которые уже не в состоянии обслужить головное устройство.

Промежуточное коммутационное устройство применяется в промышленном и медицинском оборудовании, транспорте, холодильном оборудовании, телевизорах и прочей бытовой технике.

Реле постоянного тока

Реле постоянного тока делятся на нейтральные и поляризованные. Отличие между ними состоит в том, что поляризованные КУ постоянного тока чувствительны к полярности подаваемого напряжения. Якорь коммутационного устройства меняет направление движения в зависимости от полюсов питания. Нейтральные электромагнитные реле постоянного тока не зависят от полярности напряжения.

Электромагнитные КУ постоянного тока в основном используют, когда нет возможности подключения к электрической сети переменного тока.

Четырехконтактное автомобильное реле

К недостаткам соленоидов постоянного тока относят необходимость использования блока питания и более высокую стоимость в сравнении с КУ переменного тока.

Данное видео демонстрирует схему подключения и объясняет принцип работы 4 контактного реле:

Watch this video on YouTube

Электронное реле

Электронное реле управления в схеме прибора

Разобравшись с тем, что такое токовое реле, рассмотрим электронный тип этого устройства. Конструкция и принцип действия электронных реле практически те же, что и в электромеханических КУ. Однако, для выполнения необходимых функций в электронном устройстве используется полупроводниковый диод. В современных транспортных средствах большинство функций реле и переключателей выполняют электронные релейные блоки управления и на данный момент невозможно полностью от них отказаться. Так, например, блок электронных реле позволяет контролировать расход энергии, величину напряжения на клеммах аккумуляторных батарей, управлять системой освещения и т.д.

Конструктивное строение прибора

Электромагнитные устройства подключаются к электроцепи, осуществляющей контроль или регулировку изделий, которые подключены к силовому узлу, для преобразования. Запуск может осуществляться влиянием различного рода факторов: электропитание, световая энергия, гидростатическое или давление газа.

Конструктивное устройство электромагнитного реле:1 – пружина; 2 – подвижный якорь; 3 – ферромагнитный стержень (сердечник); 4 – катушка; 5 – основание; 6 – один или несколько неподвижных контактов; 7 – исполнительный орган

Согласно стандартам, простейшее контактное устройство координируется тремя основными участками: воспринимающий, промежуточный и исполнительный. Каждый из них представлен индивидуальным механизмом, отвечающим за определенные действия в коммутационной системе.

Первичный, так называемый чувствительный, элемент производит реакцию на входящий параметр и трансформирует его в физическую величину, требующуюся для функционирования контактора.

Такой воспринимающий механизм воплощен в электромагнитной катушке с сердечником — на схеме обозначен номером 4. В зависимости от сети, к нему может быть подключено или переменное, или постоянное напряжение.

Промежуточное звено начинает сравнительный анализ преобразованной величины с заложенным образцом. Как только достигается заданное значение, узел передает сигнал чувствительного механизма исполнительному. Этот участок состоит из пружин противодействия (1) и успокоителей.

Успокоительные элементы в контакторе используются для устранения колебаний подвижных сегментов, а в реле времени – для обеспечения необходимого временного интервала

В производственной части посредством коммутационных линий (6), расположенных на корпусе над колодкой, воспроизводится влияние на подчиненную линию и контакты замыкаются.

Критерии выбора

Современный рынок снабжен большим выбором токового реле от различных производителей. Выбирая данный товар необходимо ориентироваться на техническое задание, то есть для чего приобретается прибор.

Реле максимального тока

Учитывается показатель токовой нагрузки, а также способы крепления. Существуют модели, которые имеют несколько вариаций крепежа: на дин-рейку в электрических шкафах или просто на поверхность стены.Также в продаже имеются товары, которые обладают рядом преимуществ:

  • наличие световой и звуковой индикации;
  • небольшие габариты;
  • наличие жидкокристаллического дисплея, способного выдавать цифровой результат показателей;
  • возможность выставления большого диапазона порогового значения.

Приобретая определенную модель необходимо обратить внимание на климатические условия, при которых сохраняется работоспособность устройства, а также уровень защищенности прибора. Стоит учитывать технические характеристики, коими обладают данные приспособления: показатель тока; наличие управления некоторыми характеристиками; номинальный ток нагрузки; правила эксплуатации; временная задержка. Стоит учитывать технические характеристики, коими обладают данные приспособления: показатель тока; наличие управления некоторыми характеристиками; номинальный ток нагрузки; правила эксплуатации; временная задержка

Стоит учитывать технические характеристики, коими обладают данные приспособления: показатель тока; наличие управления некоторыми характеристиками; номинальный ток нагрузки; правила эксплуатации; временная задержка.

Одновременно с этим стоит обратить внимание на герметичность прибора, которое исключает попадание воды, устойчивость к коррозии и влияние химических веществ, а также механического воздействия. Заявленный производителями гарантийный срок может говорить о надежности прибора. Современные устройства отличаются большим диапазоном настройки, удобством в использовании

Современные устройства отличаются большим диапазоном настройки, удобством в использовании.

Конструктивные особенности

В основе твердотельного реле лежит электронная плата, в состав которой входит три главных элемента — узлы управления и развязки, а также силовой ключ. В роли силовых элементов применяются такие детали:

  • Для постоянного I — транзисторы полевого типа, простые транзисторы, модульные элементы класса IGBT, а также MOSFET-транзисторы.
  • Для переменного I — сборки на базе тиристоров, а также симисторы.

Развязка цепи обеспечивается оптронами — изделиями, состоящими из излучающего и принимающего свет устройства. Между ними установлен диэлектрик, имеющий прозрачную структуру.

Управляющий узел выполнен в виде стабилизирующей схемы, обеспечивающей оптимальные уровни тока и напряжения для излучающего свет элемента. Напряжение на входе схемы должно быть от 70 до 280 Вольт.

Что касается напряжения нагрузки, его величина — до 480 Вольт. Расположение электроприбора (до или после ТТР) не имеет значения.

Как правило, устройство монтируется после нагрузки с последующим подключением к «земле». При таком варианте схемы удается защитить внутренние элементы от протекания тока КЗ (он потечет через заземляющий провод).

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ И ПАРАМЕТРЫ

Неизменной составной частью реле являются, как мы выяснили, контакты.

Основными их электрическими характеристиками являются коммутируемые напряжения и ток. Кроме того, критичным может оказаться время переключения – реле устройство достаточно инерционное, причем за счет нескольких конструктивных особенностей:

Электромагнит, являясь катушкой индуктивности, при подаче тока оказывает сопротивление его резкому нарастанию. Соответственно магнитное поле тоже запаздывает и обеспечивает нужное усилие притяжения якоря с задержкой. Контактная группа и якорь, имея определенную массу тоже инертны и вносят свой вклад в формирование задержки срабатывания.

Кстати, здесь еще не упоминалось герконовое реле, по сути тоже являющееся электромагнитным. Но разница в том, что сердечника оно не имеет. Магнитное поле воздействует непосредственно на контактные пластины, помещенные в вакуумную трубку.

За счет этого достигается высокое быстродействие. Но минус есть – низкие коммутируемые мощности. Больших токов геркон не потянет.

Это основное что касается контактов. Переходим к катушке управления.

Как уже говорилось, она может быть рассчитана на работу в цепях переменного и постоянного тока. Кроме того, катушка тоже имеет свои рабочие ток и напряжение, причем параметры эти могут значительно различаться в зависимости от типа реле. Очевидно, чем мощнее контактная группа, тем она массивней и тем большая мощность требуется для управления ею.

Вкратце это основные параметры, на которые нужно обращать внимание при выборе коммутационных изделий типа реле.

Но есть еще несколько моментов:

  • степень защиты от внешних воздействий (пыли, влаги и пр.);
  • исполнение, определяющее безопасность применения во взрывоопасных зонах.

Кроме того, некторые типы, например с открытыми контактами, при эксплуатации в сетях с напряжением 220 В без дополнительной защиты могут представлять опасность с точки зрения поражения электрическим током.

  *  *  *

2014-2020 г.г. Все права защищены.Материалы сайта имеют ознакомительный характер и не могут использоваться в качестве руководящих и нормативных документов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector