Принципы действия и схема электромагнитного реле

ВВЕДЕНИЕ

Бесконтактное
магнитное
реле (БМР) —
электромагнитное
устройство,
использующее
зависимость
возвратной
магнитной
проницаемости
от постоянного
подмагничивающего
поля, для усиления
входного сигнала,
который создает
или изменяет
это постоянное
поле.

Классификация
БМР происходит
следующим
образом:

1. по виду
статической
характеристики:
нереверсивный
и реверсивный;

2. по типу обратной
связи (ОС): БМР
без ОС; БМР с
внутренней
ОС; БМР с внешней
ОС; БМР со смешанной
ОС.

БМР отличаются
высокой надежностью;
способностью
суммировать
входные сигналы;
немедленной
готовностью
к работе; удобно
согласуются
с источником
входного сигнала
и нагрузкой;
имеют низкий
порог чувствительности
(до 10-19
Вт); большую
выходную мощность
(105 Вт);
высокий КПД
(0,7 — 0,95); высокий
коэффициент
усиления по
мощности.

Данная курсовая
работа посвящена
проектированию
одного из БМР.
Внутренняя
ПОС достигается
тем, что постоянная
составляющая
имеет величину,
которая зависит
от величины
входного сигнала
и создает поле,
которое или
складывается,
или вычитается
из поля входного
сигнала.

Основные параметры выбора реле

Контактная группа

Одним из ключевых параметров выбора ЭМР является конфигурация его контактов: механизм чаще всего срабатывает на размыкание, замыкание или переключение. При выборе необходимо учитывать следующие параметры:

  • падение напряжения;
  • номинальная нагрузка, при которой переключение выполняется с высокой надёжностью;
  • предельно допустимые коммутируемые мощность, напряжение и ток;
  • механическая и электрическая стойкость к износу;
  • импульсный ток;
  • минимальная нагрузка;
  • материал изготовления контактов.

Технические характеристики

За основу при выборе электромагнитного реле 220 В принимают:

  • рабочее напряжение и ток;
  • чувствительность (минимальное значение подаваемой на обмотку мощности, при которой устройство способно переключаться);
  • время срабатывания, отпускания, вибрации контактов;
  • коэффициент возврата, составляющий для ЭМР разных типов от 0.1 до 0.98;
  • ток срабатывания (его минимальное значение, при котором происходит переключение, замыкание или размыкание контактов);
  • коэффициент запаса (от 1.4 до 2);
  • частота коммутации реле.

Устройство и принцип работы реле

Реле представляет собой катушку, состоящую из немагнитного основания, на которое намотан провод из меди с тканевой или синтетической изоляцией, но чаще всего с диэлектрическим лаковым покрытием. Внутри катушки установленной на нетокопроводящее основание, размещается металлический сердечник. Также в устройстве имеются пружины, якорь, соединительные элементы и пары контактов.

При подаче тока на обмотку электромагнита (соленоида) сердечник притягивает якорь, который соединяется с контактом и электрическая или электронная цепь замыкается. При снижении силы тока до определенного значения, якорь, под действием пружины, возвращается на исходную позицию, вследствие чего происходит размыкание цепи.

Более плавная и точная работа достигается благодаря использованию резисторов, а защиту от скачков напряжения и искрения обеспечивает установка конденсаторов.

У большинства электромагнитных реле имеется не одна, а несколько пар контактов, что позволяет управлять несколькими цепями одновременно.

Простейшая схема устройства электромагнитного соленоида

Если в двух словах, то этот вид коммутационного устройства работает по принципу электромагнитной индукции. Благодаря довольно простому принципу действия реле имеют высокую надежность в эксплуатации.

В видеоролике ниже разъясняется принцип действия электромагнитного КУ:

Watch this video on YouTube

УСТРОЙСТВО И ПРИНЦИП ДЕЙСТВИЯ

Электромагнитное реле — это коммутационный прибор, который содержит следующие компоненты:

  • электромагнит, состоящий из электрической катушки и магнитного сердечника (ярма);
  • якорь — подвижный элемент реле;
  • выходной контакт или контактная группа.

Принцип работы электромагнитного реле заключается в следующем.

При подаче напряжения на выводы катушки по её обмотке начинает протекать ток, который индуцирует магнитное поле в сердечнике (ярме). Под воздействием магнитной силы подвижный якорь, имеющий пружинную подвеску, притягивается к ярму.

То есть, происходит срабатывание механизма. Якорь имеет механическую рычажную связь с контактной группой. Поэтому контакты группы при перемещении якоря меняют своё состояние. Контакты, которые в обесточенном состоянии катушки находились в разомкнутом состоянии, замыкаются. Те же, что были замкнутыми, размыкаются.

При прерывании электрического питания катушки происходит обратный процесс. Когда исчезает магнитная сила после отключения катушки от источника напряжения, якорь под воздействием возвратной пружины вновь занимает своё исходное положение. Возврат якоря вызывает обратное переключение контактов, которые также принимают своё исходное состояние.

Примечание.

Для определения типов контактов устройств релейного типа существует специальная терминология. Контакты, находящиеся в замкнутом состоянии при отсутствии напряжения на катушке, называются нормально замкнутыми (иногда используется термин «нормально закрытые»).

Контакты, разомкнутые при обесточенной катушке — соответственно называют нормально разомкнутыми или нормально открытыми.

Сочетание электромагнитной системы с механическим приводом контактной группы послужило причиной того, что данное реле называют также электромеханическим.

Очень полезным свойством приборов рассматриваемого типа является отсутствие гальванической связи электрических цепей управления катушкой с цепями контактов. Благодаря этому свойству исполнительные органы релейного типа широко используются в тех схемах, где необходимо разделение цепей управления и нагрузки.

ТИПЫ ПРОМЕЖУТОЧНЫХ РЕЛЕ

Питание схем защиты и автоматики осуществляется от специальных цепей оперативного тока. По типу оперативный ток может быть переменным или постоянным.

Источниками напряжения постоянного оперативного тока могут служить аккумуляторные батареи, батареи конденсаторов или выпрямительные устройства, шинки переменного опертока питаются напряжением от трансформаторов собственных нужд.

Поскольку работают промежуточные реле в цепях оперативного напряжения, в зависимости от его типа они производятся с катушками на постоянный и переменный ток.

РП – 23.

Данный тип промежуточного реле предназначен для работы в цепях постоянного напряжения. РП – 23 состоит из катушки напряжения с магнитным сердечником. Подвижной частью магнитной системы является якорь, который при подаче напряжения на катушку притягивается к сердечнику.

С якорем механически связана траверса, на которой закреплены четыре контактных мостика. Притягиваясь к сердечнику, якорь опускает траверсу, сжимая пружину, на которой она установлена. При этом происходит замыкание нормально разомкнутых контактов и размыкание нормально замкнутого.

Неподвижные контакты РП – 23 выполнены в форме уголков из тонких медных пластин. Каждый из уголков может быть установлен одним из двух способов. Благодаря этому можно получить четыре типа комбинаций вариантов контактных групп (р – группа на размыкание, з – группа на замыкание):

  • 1 р, 4 з;
  • 2 р, 3 з;
  • 3 р, 2 з;
  • 4 р, 1 з.

Такая инвариантность позволяет приспособить этот прибор к работе в составе любой схемы.

При размыкании создаётся два воздушных промежутка на каждый контакт, благодаря чему повышается их дугогасительная способность.

Это свойство важно при работе релейного аппарата в цепях отключения высоковольтных выключателей, соленоиды которых обладают большой индуктивностью и поддерживают напряжение электрической дуги при разрыве цепи. РП – 23 выпускается в различных модификациях для работы в оперативных цепях напряжением 24 В, 48 В, 110 В и 220 В

РП – 23 выпускается в различных модификациях для работы в оперативных цепях напряжением 24 В, 48 В, 110 В и 220 В.

РП – 25.

Внутренняя схема электрических соединений промежуточного реле этого типа аналогична РП – 23. Катушка РП – 25 предназначена для работы на переменном напряжении. Варианты исполнения оснащаются катушками на напряжение 100 В, 127 В или 220 В.

Рабочий ресурс электромагнитного механизма промежуточных реле РП – 23 и РП – 25 составляет 100000 срабатываний. Контактная группа выдерживает 10000 циклов замыкания – размыкания с полной электрической нагрузкой по току и напряжению.

Как работает реле.

Можно провода перекинуть. В посте есть две группы контактов — по два на каждую кнопку: два на пуск, два на стоп, каждая группа со своей стороны.

Любая из них обладает парой входов и парой выходов. Кнопки могут быть в одном корпусе или в разных С отдельными кнопками все понятно — у них есть по два контакта.

Такое реле для управления использует постоянное напряжение от 3 до 32, а коммутирует переменное от 24 до В с током до 10 А. Контакты реле обозначаются этой же буквой, но с двумя цифрами, разделенными точкой: первая цифра указывает на порядковый номер реле, а вторая на порядковый номер контактной группы этого реле.

Температурная деформация элементов достигается применением биметаллических материалов. Если катушка на В, на нее подаются две любые фазы.

Схема подключения магнитного пускателя с катушкой на 380 В

Реверсивная схема подключения трехфазного двигателя через магнитные пускатели Для повышения безопасности добавлено тепловое реле, через которое проходят две фазы, третья подается напрямую, так как защиты по двум более чем достаточно. Некоторые модели пускателей оснащены ограничителями перенапряжений, которые применяют в полупроводниковых управляющих системах.

На рисунках ниже показана работа нормально разомкнутого контакта. На корпусе теплового реле можно задать значение тока, превышение которого вызовет сработку реле и замыкание его контактов.

Поиск на сайте

Удержание контактора во включенном состоянии происходит по принципу самоподхвата — когда дополнительный контакт подключается параллельно пусковой кнопке, тем самым подавая напряжение на катушку, вследствие чего пропадает необходимость удерживать кнопку запуска в нажатом состоянии. На принципиальных схемах электромагнитное реле обозначается следующим образом. Источник питания подключают к контактам, находящимся ниже на корпусе.

Также обратите внимание, что провод от кнопки включения вправо или влево подается не сразу на катушку, а через постоянно замкнутые контакты другого пускателя. Если номинал катушки на вольт — один вывод к одной из фаз, а второй, через цепь кнопок к другой фазе

Так выглядит в разобранном виде Есть еще один нюанс: контакты пускателя могут быть двух типов: нормально замкнутыми и нормально разомкнутыми.
магнитный пускатель для чайников

Как подключить магнитный пускатель

Других отличий, как в соединениях элементов схемы, так и в её работе в сравнении со схемой с фазным напряжением, нет. Контакты могут коммутировать как постоянный, так и переменный ток, величина тока и напряжения обычно указана на крышке реле. На якоре жестко закреплены подвижные контакты, напротив которых расположены соответствующие пары неподвижных контактов. Далее на реле указаны электрические параметры его контактов.
Таким образом, получается, что при выключенном реле контакты замкнуты. Теперь проверяем работу теплового реле.
Игловский, Г. При этой схеме большое значение имеет номинальное напряжение катушки.
Чем отличаются контакторы и пускатели.
Для большей наглядности условно отметим их питающие клеммы цифрами 1—3—5, а те, к которым подключен двигатель как 2—4—6. С этой целью, наиболее часто, используется специальная индикаторная отвертка.
Рассматривать их надо отдельно — проще понять логику. Напряжение подключается к катушке, магнитное поле притягивает якорь, он замыкает или размыкает контакты.
Естественно, это приведёт к скорому выходу из строя контактов реле. При использовании катушки в Вольт необходимо произвести подключение проводов красного или черного цветов.
Контактор принцип работы и схема подключения

Контакты реле.

В зависимости от конструктивных особенностей контакты промежуточных реле бывают нормально разомкнутые (замыкающие), нормально замкнутые (размыкающие) или перекидные.

3.1. Нормально разомкнутые контакты.

Пока напряжение питания не подано на катушку реле, его нормально разомкнутые контакты всегда разомкнуты. При подаче напряжения реле срабатывает и его контакты замыкаются, замыкая электрическую цепь. На рисунках ниже показана работа нормально разомкнутого контакта.

3.2. Нормально замкнутые контакты.

Нормально замкнутые контакты работают наоборот: пока реле обесточено, они всегда замкнуты. При подаче напряжения реле срабатывает и его контакты размыкаются, размыкая электрическую цепь. На рисунках показана работа нормально разомкнутого контакта.

3.3. Перекидные контакты.

У перекидных контактов при обесточенной катушке средний контакт, закрепленный на якоре, является общим и замкнут с одним из неподвижных контактами. При срабатывании реле средний контакт вместе с якорем перемещается в сторону другого неподвижного контакта и замыкается с ним, одновременно разрывая связь с первым неподвижным контактом. На рисунках ниже показана работа перекидного контакта.

Многие реле имеют не одну, а несколько контактных групп, что позволяет осуществлять управление несколькими электрическими цепями одновременно.

К контактам промежуточных реле предъявляются особые требования. Они должны иметь малое переходное сопротивление, большую износоустойчивость, малую склонность к привариванию, высокую электропроводность и большой срок службы.

В процессе работы контакты своими токоведущими поверхностями прижимаются друг к другу с определенным усилием, создаваемым возвратной пружиной. Токоведущая поверхность контакта, соприкасающаяся с токоведущей поверхностью другого контакта называется контактной поверхностью, а место перехода тока из одной контактной поверхности в другую называется электрическим контактом.

Соприкосновение двух поверхностей происходит не по всей кажущейся площади, а лишь отдельными площадками, так как даже при самой тщательной обработке контактной поверхности на ней все равно будут оставаться микроскопические бугорки и шероховатости. Поэтому общая площадь соприкосновения будет зависеть от материала, качества обработки контактных поверхностей и усилия сжатия. На рисунке показаны контактные поверхности верхнего и нижнего контактов в сильно увеличенном виде.

В месте перехода тока с одного контакта в другой возникает электрическое сопротивление, которое называется переходным сопротивлением контакта. На величину переходного сопротивления существенное влияние оказывает величина контактного нажатия, а также сопротивление окисных и сульфидных пленок, покрывающих контакты, так как они являются плохими проводниками.

В процессе длительной работы поверхности контактов изнашиваются и могут покрываться налетами копоти, окисными пленками, пылью, непроводящими частицами. Также износ контактов может быть вызван механическими, химическими и электрическими факторами.

Механический износ происходит при скольжении и ударах контактных поверхностей. Однако главной причиной разрушения контактов являются электрические разряды, возникающие при размыкании и замыкании цепей в особенности цепей постоянного тока с индуктивной нагрузкой. В момент размыкания и замыкания на контактных поверхностях происходят явления плавления, испарения и размягчения контактного материала, а также перенос металла с одного контакта на другой.

В качестве материалов для контактов реле применяют серебро, сплавы твердых и тугоплавких металлов (вольфрам, рений, молибден) и металлокерамические композиции. Наибольшее применение получило серебро, обладающее малым контактным сопротивлением, высокой электропроводностью, хорошими технологическими свойствами и относительно невысокой стоимостью.

Следует помнить, что абсолютно надежных контактов нет, поэтому для повышения их надежности применяют параллельное и последовательное включение контактов: при последовательном включении контакты могут разорвать большой ток, а параллельное включение повышает надежность замыкания электрической цепи.

Основные виды реле и их назначение

Производители настраивают современные коммутационные устройства таким образом, чтобы срабатывание происходило только при определенных условиях, например, при увеличении силы тока, поступающего на входные клеммы КУ. Ниже мы вкратце рассмотрим основные виды соленоидов и их назначение.

Электромагнитные реле

Электромагнитное реле – это электромеханическое коммутационное устройство, принцип действия которого основан на воздействии магнитного поля, созданного током в статичной обмотке, на якорь. Этот вид КУ разделяется собственно на электромагнитные (нейтральные) устройства, которые реагируют лишь на значение тока, подаваемого на обмотку, и поляризованные, работа которых зависит как от токовой величины, так и от полярности.

Принцип работы электромагнитного соленоида

Используемые в промышленном оборудовании электромагнитные реле находятся на промежуточной позиции между сильноточными устройствами (магнитными пускателями, контакторами и т.д.) и слаботочным оборудованием. Наиболее часто данный вид реле применяется в цепях управления.

Реле переменного тока

Срабатывание этого вида реле, как видно из названия, происходит при подаче на обмотку переменного тока определенной частоты. Данное коммутирующее устройство для переменного тока с контролем перехода фазы через ноль или без такового, представляет собой блок из тиристоров, выпрямительных диодов и управляющих схем. Реле переменного тока могут быть выполнены в виде модулей на основе трансформаторной или оптической развязки. Данные КУ применяются в сетях переменного тока с максимальным напряжением 1,6 кВ и средним током нагрузки до 320 A.

Промежуточное реле 220 В

Иногда работа электросети и приборов не возможна без использования промежуточного реле на 220 В. Обычно КУ данного типа применяется, если необходимо разомкнуть или разомкнуть разнонаправленные контакты цепи. К примеру, если используется осветительный прибор с датчиком движения, то один проводник присоединяется к сенсору, а другой подводит электроэнергию к светильнику.

Реле переменного тока широко применяются в промышленном оборудовании и бытовой технике

Работает это таким образом:

  1. подача тока на первое коммутационное устройство;
  2. от контактов первого КУ ток поступает на следующее реле, которое имеет более высокие характеристики, чем у предыдущего и способно выдерживать токи с высокими значениями.

С каждым годом реле становятся эффективней и компактней

Функции малогабаритного реле переменного тока с напряжением 220 В весьма разнообразны и широко используются в качестве вспомогательного устройства в самых различных областях. Данный вид КУ применяется в тех случаях, когда основное реле не справляется со своей задачей или же при большом количестве управляемых сетей которые уже не в состоянии обслужить головное устройство.

Промежуточное коммутационное устройство применяется в промышленном и медицинском оборудовании, транспорте, холодильном оборудовании, телевизорах и прочей бытовой технике.

Реле постоянного тока

Реле постоянного тока делятся на нейтральные и поляризованные. Отличие между ними состоит в том, что поляризованные КУ постоянного тока чувствительны к полярности подаваемого напряжения. Якорь коммутационного устройства меняет направление движения в зависимости от полюсов питания. Нейтральные электромагнитные реле постоянного тока не зависят от полярности напряжения.

Электромагнитные КУ постоянного тока в основном используют, когда нет возможности подключения к электрической сети переменного тока.

Четырехконтактное автомобильное реле

К недостаткам соленоидов постоянного тока относят необходимость использования блока питания и более высокую стоимость в сравнении с КУ переменного тока.

Данное видео демонстрирует схему подключения и объясняет принцип работы 4 контактного реле:

Watch this video on YouTube

Электронное реле

Электронное реле управления в схеме прибора

Разобравшись с тем, что такое токовое реле, рассмотрим электронный тип этого устройства. Конструкция и принцип действия электронных реле практически те же, что и в электромеханических КУ. Однако, для выполнения необходимых функций в электронном устройстве используется полупроводниковый диод. В современных транспортных средствах большинство функций реле и переключателей выполняют электронные релейные блоки управления и на данный момент невозможно полностью от них отказаться. Так, например, блок электронных реле позволяет контролировать расход энергии, величину напряжения на клеммах аккумуляторных батарей, управлять системой освещения и т.д.

Виды электромагнитных реле

Первая классификация — по питанию. Есть электромагнитные реле постоянного и переменного тока. Реле постоянного тока могут быть нейтральными или поляризованными. Нейтральные срабатывают при подаче питания любой полярности, поляризованные реагируют только на положительное или на отрицательное (зависят от направления тока).

Виды электромагнитных реле по типу питающего напряжения и внешний вид одной из моделей

По электрическим параметрам

Еще делят электромагнитные реле по чувствительности:

  • Мощность для сработки 0,01 Вт и меньше — высокочувствительные.
  • Потребляемая обмоткой мощность при срабатывании — от 0,01 Вт до 0,05 Вт — чувствительные.
  • Остальные — нормальные.

В первую очередь стоит определиться с электрическими параметрами

Первые две группы (высокочувствительные и чувствительные) могут управляться от микросхем. Они вполне могут выдавать требуемый уровень напряжения, так что промежуточное усиление не требуется.

По уровню коммутируемой нагрузки есть такое деление:

  • Не больше 120 Вт переменного и 60 Вт постоянного тока — слаботочные.
  • 500 Вт переменного и 150 Вт постоянного — повышенной  мощности;
  • Более 500 Вт переменного тока — контакторы. Применяются в силовых цепях.

Есть еще деление по времени срабатывания. Если контакты замыкаются не более чем после 50 мс (миллисекунд) после подачи питания на катушку — это быстродействующее. Если проходит от 50 мс до 150 мс — это нормальная скорость, а все которые требуют для сработки контактов больше 150 мс — замедленные.

По исполнению

Есть еще электромагнитные реле с различной степенью герметичности.

  • Открытые электромагнитные реле. Это те, у которых все части «на виду».
  • Герметичные. Они запаяны или заварены в металлический или пластиковый корпус, внутри которого воздух или инертный газ. Доступа к контактам и катушке нет, доступны только выводы для подачи питания и подключения цепей.
  • Зачехленные. Есть чехол, но он не припаян, а соединяется с корпусом при помощи защелок. Иногда присутствует накидная проволочная петля, которая удерживает крышку.

По массе и размерам отличия могут быть очень существенными

И еще один принцип деления — по размерам. Есть микроминиатюрные — они весят менее 6 граммов, миниатюрные — от 6 до 16 граммов, малогабаритные имеют массу от 16 гр до 40 гр, а остальные — нормальные.

Электрическая схема подключения реле

На крышке любого устройства, производитель наносит принципиальную схему подключения электромагнитного реле в сеть. На электрической схеме катушку реле изображают прямоугольником и обозначают литерой «К» с цифровым индексом, например, К3. При этом контактные пары, которые не находятся под нагрузкой маркируются буквой «К» с двумя, разделенными точкой, цифрами. например, К3.2 — контакт номер 2, реле К3. Расшифровывается обозначение так: первая цифра – это порядковый номер электромагнитного реле на схеме, вторая обозначает индекс контактных пар данного реле.

Ниже приведён пример электрической схемы, на которой происходит управление соленоидом пневматического клапана с помощью НО контакта реле К1. После замыкания S1 реле запитывается и НО контакт 13, 14 замыкается, при этом на соленоиде Y1 появляется напряжение.

Контактные пары, которые располагаются вблизи электромагнитной катушки, обозначаются штриховой линией. В принципиальной схеме подключения реле обязательно отображаются все параметры контактных пар, указывается максимально допустимое значение коммутационного тока контактов. На катушке реле производитель указывает тип тока и рабочее напряжение.

Стоит отметить, что схема подключения электромагнитного реле составляется для каждого типа элемента сугубо индивидуально в соответствии с особенностями его работы в автоматизированной сети. При этом, для корректной работы некоторых типов реле необходима настройка, в ходе которой устанавливаются оптимальные параметры для работы реле: задержка активации, ток сработки, перезагрузка и т. д.

Принцип работы и внешний вид

Если говорить обобщенно, реле представляет собой электрический механизм, замыкающий или разрывающий электрическую цепь. Его работа осуществляется исходя из электрических или других параметров, которые на него действуют.

Выбирая режим работы реле нужно руководствоваться частотой включений, величиной тока, а также характером испытываемых нагрузок.

Конструкция состоит из следующих компонентов:

  • Катушки.Катушка является медным проводом, который намотан на немагнитный материал; может находиться в тканевой изоляции или быть покрытым специальным лаком, который не пропускает электричество;
  • Сердечника.Он содержит железо и приходит в действие при проходе тока через витки катушки;
  • Подвижного якоря.Такой якорь является пластиной, крепящейся к якорю, он воздействует на замыкающие контакты;
  • Контактной системы.Она является переключателем состояния цепи.

В основе работы реле – электромагнитная сила, появляющаяся в сердечнике катушки при пропускании через нее тока.

Катушка является втягивающим устройством, в котором сердечник связан с подвижным якорем. Он и приводит в действие силовые контакты. А к катушке можно дополнительно подключать резистор для увеличения точности срабатывания.

НАЗНАЧЕНИЕ РЕЛЕ И ИХ ПРИМЕНЕНИЕ

Итак, попробуем просто и доходчиво ответить на вопросы:

  1. из чего состоит реле и как работает;
  2. в чем его назначение;
  3. отличия реле постоянного и переменного тока.

1. Минимально реле представляет собой группу контактов, управляемых электромагнитом. При протекании по его катушке электрического тока, магнитное поле изменяет положение якоря, механически связанного с контактными пластинами.

2. Основных предназначений несколько, что определяется следующими свойствами:

  • небольшие токи, протекающие через катушку управляют контактами, способными коммутировать значительно большие мощности (своего рода усилитель);
  • за счет использования нескольких контактных групп один сигнал может управлять несколькими независимыми направления (разветвитель);
  • при использовании нормально замкнутых контактов подача на катушку напряжения будет вызывать разрыв (отключение) цепи (инверсия);
  • поскольку управляющие и коммутационные части устройства электрической связи между собой не имеют – осуществляется гальваническая развязка цепей.

За счет простоты и надежности конструкции реле нашли применение в системах автоматики, защиты, управления, сигнализации.

3. Если вспомнить курс физики, то направление магнитного поля зависит от направления протекания электрического тока. Таким образом, при постоянном напряжении на обмотке реле магнитное поле не меняется и якорь всегда находится в притянутом состоянии.

Если без дополнительных доработок подать на электромагнит переменный ток, то магнитное поле будет меняться в соответствии с его частотой. В свою очередь это вызовет дребезг якоря и контактов.

Для реле, используемых в цепях переменного тока применяются конструктивные решения, позволяющие компенсировать пульсации.

Что такое реле времени, для чего нужно и где используется

Это устройство, предназначенное для включения и выключения электрической цепи в автоматическом режиме, через определенный интервал времени, используется в электротехнике и чаще в быту. По принципу работы разделяются на следующие виды:

  1. Электромагнитные
  2. Пневматические
  3. С часовым механизмом
  4. Моторные
  5. Электронные

В электротехнике также существуют интервальные реле, они используются для создания интервального включения цепи с определенной выдержкой по времени после заданного сигнала, когда необходимо выполнить включение с интервалом после включения или выключения.

Бытовые приборы бывают механические и электронные. Сегодня на рынке чаще можно встретить электронные устройства с большим набором функций. Конструкция представляет из себя простую схему с магнитной катушкой и контактной группой, основным отличием от других устройств, является встроенная интегральная схема, управляющая питанием катушки.

В механических приборах интегральную схему заменяет специальный механизм, напоминающий вращающийся диск. За счет вращения диска и перемещения на нем специальных рисок происходит включение или отключение цепи в определенное время.

Реле времени невероятно полезное устройство, нашедшее свое применение во многих сферах жизни, активно применяется для управления питанием электрических приборов от 220В, управлением духовых шкафов, теплых полов, стиральных машин, отопления и систем кондиционирования.

Например, когда необходимо включить электропитание водяного насоса на даче для набора воды без вашего участия и вовремя отключить, чтобы уберечь его от сухого хода. Или полностью обесточить электросеть в определённые часы с целью сбережения электроэнергии.

Согласование тяговых и противодействующих характеристик

Электромагнитные реле благодаря простоте конструкции и надежности широко распространены в схемах электропривода и в схемах защиты энергосистем. Электромагнитные реле приводятся в действие с помощью электромагнитов   постоянного  или переменного тока. Рассмотрим работу максимального реле постоянного тока с простейшей магнитной системой клапанного типа. Противодействующие усилия создаются возвратной Pi и контактными Р2 пружинами. Усилие контактных пружин создает предварительное нажатие в момент соприкосновения контактов.

В результате уменьшается вибрация контактов при срабатывании и обеспечивается необходимое контактное нажатие. С учетом линейной зависимости силы пружины от ее деформации и относительно небольшого перемещения якоря противодействующее усилие пружин, приведенное к якорю, меняется линейно с изменением зазора. Для срабатывания реле необходимо, чтобы тяговая характеристика Рэ\ во всех точках хода якоря шла выше суммарной противодействующей характеристики Ра = Р\-\-Р2. Для токового реле при данном начальном зазоре бн положение Pai зависит от тока.   При ненасыщенной   магнитной системе тяговая сила пропорциональна квадрату тока.

Схема электромагнитного реле.

Наименьшее значение тока, при котором кривая P3i начинает проходить выше зависимости Рш определяет ток трогания /Тр реле. Срабатывание реле определяется точкой в (зазор б = бн), при которой Рэ] идет выше Рп. Для надежного включения в обмотку реле обычно подается ток /раб>/тр. Коэффициент запаса при этом £3 = /раб//ср и обычно составляет k3 — l,4. С ростом ki тяговая характеристика поднимается, увеличивается тяговое электромагнитное усилие, действующее на якорь, увеличивается ускорение якоря, сокращается полное время включения. Однако при этом возрастают удары в механизме и вибрация контактов. Для того чтобы устранить залипание якоря, в магнитной системе всегда создается конечный зазор бк. При этом . зазоре тяговое усилие значительно превышает противодействующее.

Для отключения реле тяговая характеристика Рт во . всех точках должна быть ниже характеристики Рп. При этом усилие, развиваемое противодействующими пружинами, больше электромагнитного усилия и якорь возвратится в начальное положение. Ток при таком положении характеристики называется током отпускания или током возврата. При отпускании реле определяющей точкой является точка б, в которой характеристика Ра идет ниже характеристики Рп. Для реле защиты энергосистем и электропривода, контролирующих значение тока в узких пределах, коэффициент возврата йв = /0тп//Ср должен быть возможно ближе к единице.

Электромагнитное реле.

Допустим, требуется реле, которое срабатывает при токе 100 А и отпускает при токе 99 А, т. е. £в = 0,99. В электромагнитных реле такой k5 получить трудно, и в этих случаях применяются электронные реле. Если реле применяется для защиты установки от чрезмерного понижения напряжения сети, то оно также должно иметь высокий kB. Например, если установка должна отключаться от сети при напряжении, равном 70 % Uhqm, то необходимо применить реле с kB = Q,7. Такой kB можно легко получить в электромагнитном реле переменного тока. Рассмотренное реле срабатывает при любом направлении тока в обмотке. Такие реле называются нейтральными.

Строение электромагнитного реле.

Поскольку всегда РПЗб>0, коэффициент возврата максимального реле kB<\. Для увеличения kB необходимо максимально сблизить тяговую и противодействующую характеристики с целью уменьшения РИЗб- В реле, как правило, основное противодействующее усилие создается возвратной пружиной. Усилие контактной пружины невелико, и при рассмотрении коэффициента возврата им можно пренебречь. Для получения высокого kB противодействующая характеристика должна быть такой же нелинейной, как и тяговая.

Для  максимального сближения тяговой и противодействующей характеристик последней можно придать нелинейный характер. Добиться этого удается ценой сложных конструктивных решений, снижающих надежность реле .(противодействующее усилие создается несколькими пружинами). Такие решения применяются редко. В простейшем случае и при одной пружине рекомендуется выбирать ее с наибольшей возможной жесткостью, чтобы   противодействующая   характеристика   совпадала с касательной, проведенной к тяговой характеристике при б = бн. В этом случае значение РИзб будет минимальным, а kB максимальным.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector